You are currently browsing the tag archive for the ‘bustools’ tag.

A few months ago, in July 2019, I wrote a series of five posts about the Melsted, Booeshaghi et al. 2019 preprint on this blog, including a post focusing on a new fast workflow for RNA velocity based on kallisto | bustools.  This new workflow replaces the velocyto software published with the RNA velocity paper (La Manno et al. 2018), in the sense that the kallisto | bustools is more than an order of magnitude faster than velocyto (and Cell Ranger which it builds on), while producing near identical results:

kallisto_velocyto_comp

In my blogpost, I showed how we were able to utilize this much faster workflow to easily produce RNA velocity for a large dataset of 113,917 cells from Clark et al. 2019, a dataset that was intractable with Cell Ranger + velocyto.

The kallisto | bustools RNA velocity workflow makes use of two novel developments: a new mode in kallisto called kallisto bus that produces BUS files from single-cell RNA-seq data, and a new collection of new C++ programs forming “bustools” that can be used to process BUS files to produce count matrices. The RNA velocity workflow utilizes the bustools sort, correct, capture and count commands. With these tools an RNA velocity analysis that previously took a day now takes minutes. The workflow, associated tools and validations are described in the Melsted, Booeshaghi et al. 2019 preprint.

Now, in an interesting exercise presented at the Single Cell Genomics 2019 meeting, Sten Linnarsson revealed that he reimplemented the kallisto | bustools workflow in Loompy. Loompy, which previously consisted of some Python tools for reading and writing Loom files, now has a function that runs kallisto bus. It also consists of Python functions that are used to manipulate BUS files; these are Python reimplementations of the bustools functions needed for RNA velocity and produce the same output as kallisto | bustools. It is therefore possible to now answer a question I know has been on many minds… one that has been asked before but not to my knowledge, in the single-cell RNA-seq setting… is Python really faster than C++ ?

To answer this question we (this is an analysis performed with Sina Booeshaghi), performed an apples-to-apples comparison running kallisto | bustools and Loompy on exactly the same data, with the same hardware. We pre-processed both the human forebrain data from La Manno et al. 2018,  and data from Oetjen et al. 2018 consisting of 498,303,099 single-cell RNA-seq reads sequenced from a cDNA library of human bone marrow (SRA accession SRR7881412; see also PanglaoDB).

First, we examined the correspondence between Loopy and bustools on the human forebrain data. As expected, given that the Loompy code first runs the same kallisto as in the kallisto | bustools workflow, and then reimplements bustools, the results are the near identical. In the first plot every dot is a cell (as defined by the velocyto output from La Manno et al. 2018) and the number of counts produced by each method is shown. In the second, the correlation between gene counts in each cell are plotted:

The figures above are produced from the “spliced” RNA velocity matrix. We also examined the “unspliced” matrix, with similar results:

In runtime benchmarks on the Oetjen et al. 2018 data we found that kallisto | bustools runs 3.75 faster than Loompy (note that by default Loompy runs kallisto with all available threads, so we modified the Loompy source code to create a fair comparison). Furthermore, kallisto | bustools requires 1.8 times less RAM. In other words, despite rumors to the contrary, Python is indeed slower than C++ ! 

Of course, sometimes there is utility in reimplementing software in another language, even a slower one. For example, a reimplementation of C++ code could lead to a simpler workflow in a higher level language. That’s not the case here. The memory efficiency of kallisto | bustools makes possible the simplest user interface imaginable: a kallisto | bustools based Google Colab notebook allows for single-cell RNA-seq pre-processing in the cloud on a web browser without a personal computer.

At the recent Single Cell Genomics 2019 meeting, Linnarsson’s noted that Cell Ranger + veloctyto has been replaced by kallisto | bustools:

image (9).png

Indeed, as I wrote on my blog shortly after the publication of Melsted, Booeshaghi et al., 2019, RNA velocity calculations that were previously intractable on large datasets are now straightforward. Linnarsson is right. Users should always adopt best-in-class tools in favor of methods that underperform in accuracy, efficiency, or both. #methodsmatter

This post is the fifth in a series of five posts related to the paper “Melsted, Booeshaghi et al., Modular and efficient pre-processing of single-cell RNA-seq, bioRxiv, 2019“. The posts are:

  1. Near-optimal pre-processing of single-cell RNA-seq
  2. Single-cell RNA-seq for dummies
  3. How to solve an NP-complete problem in linear time
  4. Rotating the knee (plot) and related yoga
  5. High velocity RNA velocity

The following passage about Beethoven’s fifth symphony was written by one of my favorite musicologists:

“No great music has ever been built from an initial figure of four notes. As I have said elsewhere, you might as well say that every piece of music is built from an initial figure of one note. You may profitably say that the highest living creatures have begun from a single nucleated cell. But no ultra-microscope has yet unraveled the complexities of the single living cell; nor, if the spectroscope is to be believed, are we yet very full informed of the complexities of a single atom of iron : and it is quite absurd to suppose that the evolution of a piece of music can proceed from a ‘simple figure of four notes’ on lines in the least resembling those of nature.” – Donald Francis Tovey writing about Beethoven’s Fifth Symphony in Essays in Musical Analysis Volume I, 1935.

This passage conveys something true about Beethoven’s fifth symphony: an understanding of it cannot arise from a limited fixation on the famous four note motif. As far as single-cell biology goes, I don’t know whether Tovey was familiar with Theodor Boveri‘s sea urchin experiments, but he certainly hit upon a scientific truth as well: single cells cannot be understood in isolation. Key to understanding them is context (Eberwine et al., 2013).

RNA velocity, with roots in the work of Zeisel et al., 2011, has been recently adapted for single-cell RNA-seq by La Manno et al. 2018, and provides much needed context for interpreting the transcriptomes of single-cells in the form of a dynamics overlay. Since writing a review about the idea last year (Svensson and Pachter, 2019), I’ve become increasingly convinced that the method, despite relying on sparse data, numerous very strong model assumptions, and lots of averaging, is providing meaningful biological insight. For example, in a recent study of spermatogonial stem cells (Guo et al. 2018), the authors describe two “unexpected” transitions between distinct states of cells that are revealed by RNA velocity analysis (panel a from their Figure 6, see below):

velocityguo.jpeg

Producing an RNA velocity analysis currently requires running the programs Cell Ranger followed by velocyto. These programs are both very slow. Cell Ranger’s running time scales at about 3 hours per hundred million reads (see Supplementary Table 1 Melsted, Booeshaghi et al., 2019). The subsequent velocyto run is also slow. The authors describe it as taking “approximately 3 hours” but anecdotally the running time can be much longer on large datasets. The programs also require lots of memory.

To facilitate rapid and large-scale RNA velocity analysis, in Melsted, Booeshaghi et al., 2019  we describe a kallisto|bustools workflow that makes possible efficient RNA velocity computations at least an order of magnitude faster than with Cell Ranger and velocyto. The work, a tour-de-force of development, testing and validation, was primarily that of Sina Booeshaghi. Páll Melsted implemented the bustools capture command and Kristján Hjörleifsson assisted with identifying and optimizing the indices for pseudoalignment. We present analysis on two datasets in the paper. The first is single-cell RNA-seq from retinal development recently published in Clark et al. 2019. This is a beautiful paper- and I don’t mean just in terms of the results. Their data and results are extremely well organized making their paper reproducible. This is so important it merits a shout out 👏🏾

See Clark et al. 2019‘s  GEO GSE 118614 for a well-organized and useful data share.

The figure below shows RNA velocity vectors overlaid on UMAP coordinates for Clark et al.’s 10 stage time series of retinal development (see cell [8] in our python notebook):

clarkvelocity.jpeg

An overlap on the same UMAP with cells colored by type is shown below:

clarkveloctiycelltype.jpeg

Clark et al. performed a detailed pseudotime analysis in their paper, which successfully identified genes associated with cell changes during development. This is a reproduction of their figure 2:

fig2clark.jpeg

We examined the six genes from their panel C from a velocity point of view using the scvelo package and the results are beautiful:

clarkphase.jpeg

What can be seen with RNA velocity is not only the changes in expression that are extracted from pseudotime analysis (Clark et al. 2019 Figure 2 panel C), but also changes in their velocity, i.e. their acceleration (middle column above). RNA velocity adds an interesting dimension to the analysis.

To validate that our kallisto|bustools RNA velocity workflow provides results consistent with velocyto, we performed a direct comparison with the developing human forebrain dataset published by La Manno et al. in the original RNA velocity paper (La Manno et al. 2018 Figure 4).

kallisto_velocyto_comp.jpeg

The results are concordant, not only in terms of the displayed vectors, but also, crucially, in the estimation of the underlying phase diagrams (the figure below shows a comparison for the same dataset; kallisto on the left, Cell Ranger + velocyto on the right):

phase.jpeg

Digging deeper into the data, one difference we found between the workflows (other than speed) is the number of reads counts. We implemented a simple strategy to estimate the required spliced and unspliced matrices that attempts to follow the one described in the La Manno et al. paper, where the authors describe the rules for characterizing reads as spliced vs. unspliced as follows:

1. A molecule was annotated as spliced if all of the reads in the set supporting a given molecule map only to the exonic regions of the compatible transcripts.
2. A molecule was annotated as unspliced if all of the compatible transcript models had at least one read among the supporting set of reads for this molecule mapping that i) spanned exon-intron boundary, or ii) mapped to the intron of that transcript.

In the kallisto|bustools workflow this logic was implemented via the bustools capture command which was first use to identify all reads that were compatible only with exons (i.e. there was no pseudoalignment to any intron) and then all reads that were compatible only with introns  (i.e. there was no pseudoalignment completely within an exon). While our “spliced matrices” had similar numbers of counts, our “unspliced matrices” had considerably more (see Melsted, Booeshaghi et al. 2019 Supplementary Figure 10A and B):

supp10.jpeg

To understand the discrepancy better we investigated the La Manno et al. code, and we believe that differences arise from the velocyto package logic.py code in which the same count function

def count(self, molitem: vcy.Molitem, cell_bcidx: int, dict_layers_columns: Dict[str, np.ndarray], geneid2ix: Dict[str, int])

appears 8 times and each version appears to implement a slightly different “logic” than described in the methods section.

A tutorial showing how to efficiently perform RNA velocity is available on the kallisto|bustools website. There is no excuse not to examine cells in context.

 

This post is the fourth in a series of five posts related to the paper “Melsted, Booeshaghi et al., Modular and efficient pre-processing of single-cell RNA-seq, bioRxiv, 2019“. The posts are:

  1. Near-optimal pre-processing of single-cell RNA-seq
  2. Single-cell RNA-seq for dummies
  3. How to solve an NP-complete problem in linear time
  4. Rotating the knee (plot) and related yoga
  5. High velocity RNA velocity

The “knee plot” is a standard single-cell RNA-seq quality control that is also used to determine a threshold for considering cells valid for analysis in an experiment. To make the plot, cells are ordered on the x-axis according to the number of distinct UMIs observed. The y-axis displays the number of distinct UMIs for each barcode (here barcodes are proxies for cells). The following example is from Aaron Lun’s DropletUtils vignette:

knee

A single-cell RNA-seq knee plot.

High quality barcodes are located on the left hand side of the plot, and thresholding is performed by identifying the “knee” on the curve. On the right hand side, past the inflection point, are barcodes which have relatively low numbers of reads, and are therefore considered to have had failure in capture and to be too noisy for further analysis.

In Melsted, Booeshaghi et al., Modular and efficient pre-processing of single-cell RNA-seq, bioRxiv, 2019, we display a series of plots for a benchmark panel of 20 datasets, and the first plot in each panel (subplot A)is a knee plot. The following example is from an Arabidopsis thaliana dataset (Ryu et al., 2019; SRR8257100)

SRR8257100_v2

Careful examination of our plots shows that unlike the typical knee plot made for single-cell RNA-seq , ours has the x- and y- axes transposed. In our plot the x-axis displays the number of distinct UMI counts, and the y-axis corresponds to the barcodes, ordered from those with the most UMIs (bottom) to the least (top). The figure below shows both versions of a knee plot for the same data (the “standard” one in blue, our transposed plot in red):

rankumiumirank

Why bother transposing a plot? 

We begin by observing that if one ranks barcodes according to the number of distinct UMIs associated with them (from highest to lowest), then the rank of a barcode with x distinct UMIs is given by f(x) where

f(x) = |\{c:\# \mbox{UMIs} \in c \geq x\}|.

In other words, the rank of a barcode is interpretable as the size of a certain set. Now suppose that instead of only measurements of RNA molecules in cells, there is another measurement. This could be measurement of surface protein abundances (e.g. CITE-seq or REAP-seq), or measurements of sample tags from a multiplexing technology (e.g. ClickTags). The natural interpretation of #distinct UMIs as the independent variable and  the rank of a barcode as the dependent variable is now clearly preferable. We can now define a bivariate function f(x,y) which informs on the number of barcodes with at least x RNA observations and tag observations:

f(x,y) = |\{c:\# \mbox{UMIs} \in c \geq x \mbox{ and} \# \mbox{tags} \in c \geq y  \}|.

Nadia Volovich, with whom I’ve worked on this, has examined this function for the 8 sample species mixing experiment from Gehring et al. 2018. The function is shown below:

 

3d2

Here the x-axis corresponds to the #UMIs in a barcode, and the y-axis to the number of tags. The z-axis, or height of the surface, is the f(x,y) as defined above.  Instead of thresholding on either #UMIs or #tags, this “3D knee plot” makes possible thresholding using both (note that the red curve shown above corresponds to one projection of this surface).

Separately from the issue described above, there is another subtle issue with the knee plot. The x-axis (dependent) variable really ought to display the number of molecules assayed rather than the number of distinct UMIs. In the notation of Melsted, Booeshaghi et al., 2019 (see also the blog post on single-cell RNA-seq for dummies), what is currently being plotted is |supp(I)|, instead of |I|. While |I| cannot be directly measured, it can be inferred (see the Supplementary Note of Melsted, Booeshaghi et al., 2019), where the cardinality of I is denoted by k (see also Grün et al,, 2014). If d denotes the number of distinct UMIs for a barcode and n the effective number of UMIs , then k can be estimated by

\hat{k} = \frac{log(1-\frac{d}{n})}{log(1-\frac{1}{n})}.

The function estimating k is monotonic so for the purpose of thresholding with the knee plot it doesn’t matter much whether the correction is applied, but it is worth noting that the correction can be applied without much difficulty.

hp_d05_opener_sized

 

 

 

This post is the third in a series of five posts related to the paper “Melsted, Booeshaghi et al., Modular and efficient pre-processing of single-cell RNA-seq, bioRxiv, 2019“. The posts are:

  1. Near-optimal pre-processing of single-cell RNA-seq
  2. Single-cell RNA-seq for dummies
  3. How to solve an NP-complete problem in linear time
  4. Rotating the knee (plot) and related yoga
  5. High velocity RNA velocity

There is a million dollar prize on offer for a solution to the P vs. NP problem, so it’s understandable that one may wonder whether this blog post is an official entry. It is not.

The title for this post was inspired by a talk presented by David Tse at the CGSI 2017 meeting where he explained “How to solve NP-hard assembly problems in linear time“. The gist of the talk was summarized by Tse as follows:

“In computational genomics there’s been a lot of problems where the formulation is combinatorial optimization. Usually they come from some maximum likelihood formulation of some inference problem and those problems end up being mostly NP-hard. And the solution is typically to develop some heuristic way of solving the NP-hard problem. What I’m saying here is that actually there is a different way of approaching such problems. You can look at them from an information point of view.”

Of course thinking about NP-hard problems from an information point of view does not provide polynomial algorithms for them. But what Tse means is that information-theoretic insights can lead to efficient algorithms that squeeze the most out of the available information.

One of the computational genomics areas where an NP-complete formulation for a key problem was recently proposed is in single-cell RNA-seq pre-processing. After RNA molecules are captured from cells, they are amplified by PCR, and it is possible, in principle, to account for the PCR duplicates of the molecules by making use of unique molecular identifiers (UMIs). Since UMIs are (in theory) unique to each captured molecule, but identical among the PCR duplicates of that captured molecule, they can be used to identify and discard the PCR duplicates. In practice distinct captured molecules may share the same UMI causing a collision, so it can be challenging to decide when to “collapse” reads to account for PCR duplicates.

In the recent paper Srivastava et al. 2019, the authors developed a combinatorial optimization formulation for collapsing. They introduce the notion of “monochromatic arborescences” on a graph, where these objects correspond to what is, in the language of the previous post, elements of the set C. They explain that the combinatorial optimization formulation of UMI collapsing in this framework is to find a minimum cardinality covering of a certain graph by monochromatic arboresences. The authors then prove the following theorem, by reduction from the dominating set decision problem:

Theorem [Srivastava, Malik, Smith, Sudbery, Patro]: Minimum cardinality covering by monochromatic arborescences is NP-complete.

Following the standard practice David Tse described in his talk, the authors then apply a heuristic to the challenging NP-complete problem. It’s all good except for one small thing. The formulation is based on an assumption, articulated in Srivastava et al. 2019 (boldface and strikethrough is mine):

…gene-level deduplication provides a conservative approach and assumes that it is highly unlikely for molecules that are distinct transcripts of the same gene to be tagged with a similar UMI (within an edit distance of 1 from another UMI from the same gene). However, entirely discarding transcript-level information will mask true UMI collisions to some degree, even when there is direct evidence that similar UMIs must have arisen from distinct transcripts. For example, if similar UMIs appear in transcript-disjoint equivalence classes (even if all of the transcripts labeling both classes belong to the same gene), then they cannot have arisen from the same pre-PCR molecule. Accounting for such cases is especially true [important] when using an error-aware deduplication approach and as sequencing depth increases.

The one small thing? Well… the authors never checked whether the claim at the end, namely that “accounting for such cases is especially important”, is actually true. In our paper “Modular and efficient pre-processing of single-cell RNA-seq” we checked. The result is in our Figure 1d:

lostcounts

Each column in the figure corresponds to a dataset, and the y-axis shows the distribution (over cells) of the proportion of counts one can expect to lose if applying naïve collapsing to a gene. Naïve collapsing here means that two reads with the same UMI are considered to have come from the same molecule. The numbers are so small we had to include an inset in the top right. Basically, it almost never happens that there is “direct evidence that similar UMIs must have arisen from distinct transcripts”. If one does observe such an occurrence, it is almost certainly an artifact of missing annotation. In fact, this leads to an…

💡 Idea: prioritize genes with colliding UMIs for annotation correction. The UMIs directly highlight transcripts that are incomplete. Maybe for a future paper, but returning to the matter at hand…

Crucially, the information analysis shows that there is no point in solving an NP-complete problem in this setting. The naïve algorithm not only suffices, it is sensible to apply it. And the great thing about naïve collapsing is that it’s straightforward to implement and run; the algorithm is linear. The Srivastava et al. question of what is the “minimum number of UMIs, along with their counts, required to explain the set of mapped reads” is a precise, but wrong question. In the words of John Tukey: “Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise.” 

The math behind Figure 1d is elementary but interesting (see the Supplementary Note of our paper). We work with a simple binomial model which we justify based on the data. For related work see Petukhov et al. 2018. One interesting result that came out of our calculations (work done with Sina Booeshaghi), is an estimate for the effective number of UMIs on each bead in a cell. This resulted in Supplementary Figure 1:

supp_fig1_sizeU.jpg

The result is encouraging. While the number of UMIs on a bead is not quite 4^L where L is the length of the UMI (theoretical maximum shown by dashed red line for v2 chemistry and solid red line for v3 chemistry), it is nevertheless high. We don’t know whether the variation is a result of batch effect, model mis-specification, or other artifacts; that is an interesting question to explore with more data and analysis.

As for UMI collapsing, the naïve algorithm has been used for almost every experiment to date as it is the method that was implemented in the Cell Ranger software, and subsequently adopted in other software packages. This was done without any consideration of whether it is appropriate. As the Srivastava et al. paper shows, intuition is not to be relied upon, but fortunately, in this case, the naïve approach is the right one.

tenor-2

 

 

This post is the first in a series of five posts related to the paper “Melsted, Booeshaghi et al., Modular and efficient pre-processing of single-cell RNA-seq, bioRxiv, 2019“. The posts are:

  1. Near-optimal pre-processing of single-cell RNA-seq
  2. Single-cell RNA-seq for dummies
  3. How to solve an NP-complete problem in linear time
  4. Rotating the knee (plot) and related yoga
  5. High velocity RNA velocity

During the past few years computational biologists have expended enormous effort in developing tools for processing and analyzing single-cell RNA-seq. This post describes yet another: the kallisto|bustools workflow for pre-processing single-cell RNA-seq. A preprint describing the method (Melsted, Booeshaghi et al. 2019was recently posted on the bioRχiv.

tools  Number of single-cell RNA-seq tools (from the scRNA-tools catalog).

Given that there are so many programs, a natural question is: why on earth would we write yet another software program for generating a count matrix from single-cell RNA-seq reads when there are already plenty of programs out there? There’s alevin, cell rangerdropseqpipedropseqtoolsindrops… I’ve been going in alphabetical order but have to jump in with starsolo because it’s got the coolest name…now back to optimus, scruff, scpipescumiumis, zumis,  and I’m probably forgetting a few other something-umis. So why another one?

The answer requires briefly venturing back to a time long, long ago when RNA-seq was a fledgling, exciting new technology (~2009). At the time the notion of an “equivalence class” was introduced to the field (see e.g. Jiang and Wong, 2009 or Nicolae et al., 2011). Briefly, there is a natural equivalence relation on the set of reads in an RNA-seq experiment, where two reads are related when they are compatible with (i.e. could have originated from) exactly the same set of transcripts. The equivalence relation partitions the reads into equivalence classes, and, in a slight abuse of notation, the term “equivalence class” in RNA-seq is used to denote the set of transcripts corresponding to an equivalence class of reads. Starting with the pseudoalignment program kallisto that we published in Bray et al. 2016, it became possible to rapidly obtain the (transcript) equivalence classes for reads from an RNA-seq experiment.

When single-cell RNA-seq started to scale it became apparent to those of us working with equivalence classes for bulk RNA-seq that rather than counting genes from single-cell RNA-seq data, it would be better to examine what we called transcript compatibility counts (TCCs), i.e. counts of the equivalence classes (the origin of the term TCC is discussed in a previous blog post of mine). This vision has borne out: we recently published a paper demonstrating the power of TCCs for differential analysis of single-cell data (Ntranos, Yi et al. 2019) and I believe TCCs are ideal for many different single-cell RNA-seq analyses. So back to the question: why another single-cell RNA-seq pre-processing workflow?

Already in 2016 we wanted to be able to produce TCC matrices from single-cell RNA-seq data but there was no program to do it. My postdoc at the time, Vasilis Ntranos, developed a workflow, but in the course of working on a program he started to realize that there were numerous non-trivial aspects to processing single-cell RNA-seq. Even basic questions, such as how to correct barcodes or collapse UMIs required careful thought and analysis. As more and more programs for single-cell RNA-seq pre-processing started to appear, we examined them carefully and noted two things: 1. Most were not able to output TCC matrices and 2. They were, for the most part, based on ad hoc heuristics and unvalidated methods. Many of the programs were not even released with a preprint or paper. So we started working on the problem.

A key insight was that we needed a new format to allow for modular pre-processing. So we developed such a format, which we called the Barcode, UMI, Set (BUS) format, and we published a paper about it earlier this year (Melsted, Ntranos et al., 2019). This allowed us to start investigating different algorithms for the key steps, and to rearrange them and plug them in to an overall workflow as needed. Finally, after careful consideration of each of the key steps, weighing tradeoffs between efficiency and accuracy, and extensive experimentation, we settled on a workflow that is faster than any other method and based on reason rather than intuition. The workflow uses two programs, kallisto and bustools, and we call it the kallisto|bustools workflow. Some highlights:

  • kallisto|bustools can produce a TCC matrix. The matrix is compatible with the gene count matrix (it collapses to the latter), and of course gene count matrices can be output as well for use in existing downstream tools.
  • The workflow is very very fast. With kallisto|bustools very large datasets can be processed in minutes. The title of this post refers to the workflow as “near-optimal” because it runs in time similar to the unix word count function. Maybe it’s possible to be a bit faster with some optimizations, but probably not by much:
    runtime
  • kallisto|bustools uses very little memory. We worked hard to achieve this feature, as we wanted it to be useful for large-scale analyses that are going to be performed by consortia such as the Human Cell Atlas project. The workflow currently uses ~3.5Gb of RAM for processing 10x v2 chemistry data, and ~11Gb RAM for 10x v3 chemistry data; both numbers are independent of the number of reads being processed. This means users can pre-process data on a laptop:
    mem
  • The workflow is modular, thanks to its reliance on the flexible BUS format. It was straightforward to develop an RNA velocity workflow (more on this in a companion blog post). It will be easy to adapt the workflow to various technologies, to multiomics experiments, and to any custom analysis required:
    workflow
  • We tried to create comprehensive, yet succinct documentation to help make it easy to use the software (recommendations for improvements are welcome). We have online tutorials, as well as videos for novices:
    Installation instructions (and video)
    Getting started tutorial (and video).
    – Manuals for kallisto and bustools.
    – Complete code for reproducing all the results in the preprint
  • We were not lazy. In our tests we found variability in performance on different datasets so we tested the program extensively and ran numerous benchmarks on 10x Genomics data to validate Cell Ranger with respect to kallisto|bustools (note that Cell Ranger’s methods have been neither validated nor published). We compiled a benchmark panel consisting of 20 datasets from a wide variety of species. This resulted in 20 supplementary figures, each with 8 panels showing: a) the number of genes detected, b) concordance in counts per gene, c) number of genes detected, d) correlation in gene counts by cell, e) spatial separation between corresponding cells vs. neighboring cells, f,g) t-SNE analysis, h) gene set analysis to detect systematic differences in gene abundance estimation (see example below for the dataset SRR8257100 from the paper Ryu et al., 2019). We also examined in detail results on a species mixing experiment, and confirmed that Cell Ranger is consistent with kallisto on that as well. One thing we did not do in this paper is describe workflows for different technologies but such workflows and accompanying tutorials will be available soon:
    SRR8257100_v2.png
  • In addition we ran a detailed analysis on the 10x Genomics 10k E18 mouse brain dataset to investigate whether Cell Ranger pre-processing produces different results than kallisto insofar as downstream analyses are concerned. We looked at dimensionality reduction, clustering, identification of marker genes, marker gene prevalence, and pseudotime. The results were all highly concordant. An example (the pseudotime analysis) is shown below:
    pseudo
  • We did the math on some of the basic aspects of single-cell RNA-seq. We’re not the first to do this (see, e.g. Petukhov et al., 2018), but one new result we have is an estimation of the UMI diversity on beads. This should be useful for those developing new technologies, or trying to optimize existing protocols:
    supp_fig1_sizeU

Note that this post is the first in a series of five that discuss in more detail various aspects of the paper (see links at the top). Finally, a note on reproducibility and usability:

The development of the kallisto|bustools workflow, research into the methods, compilation of the results, and execution of the project required a tremendous team effort, and in working on it I was thinking of the first bioinformatics tool I wrote about and posted to the arXiv (the bioRxiv didn’t exist yet). The paper was:

Nicolas Bray and Lior Pachter, MAVID: Constrained ancestral alignment of multiple sequences, arXiv, 2003.

At the time we posted the code on our own website (now defunct, but accessible via the Wayback machine). We did our best to make the results reproducible but we were limited in our options with the tools available at the time. Furthermore, posting the preprint was highly unusual; there was almost no biology preprinting at the time. Other things have stayed the same. Considerations of software portability, efficiency and documentation were relevant then and remain relevant now.

Still, there has been an incredible development in the tools and techniques available for reproducibility and usability since that time. A lot of the innovation has been made possible by cloud infrastructure, but much of the development has been the result of changes in community standards and requirements (see e.g., Weber et al., 2019). I thought I’d compile a list of the parts and pieces of the project; they are typical for what is needed for a bioinformatics project today and comparing them to the bar in 2003 is mind boggling:

Software: GitHub repositories (kallisto and bustools); releases of binaries for multiple operating systems (Mac, Linux, Windows, Rock64); portable source code with minimal dependencies; multithreading; memory optimization; user interface.

Paper: Preprint (along with extensive Supplement providing backup for every result and claim in the main text); GitHub repository with code to reproduce all the figures/results in the preprint (reproducibility code includes R markdown, python notebooks, snakemake, software versions for every program used, fixed seeds).

Documentation: Manuals for the software; Tutorials for learning to use the code; Explanatory videos (all required materials posted on Github or available on stable websites for download).

The totality of work required to do all of this was substantial. Páll Melsted was the primary developer of kallisto and he wrote and designed bustools, which has been the foundation of the project. The key insight to adopt the BUS format was work in collaboration with Vasilis Ntranos. This was followed by long conversations on the fundamentals of single-cell RNA-seq with Jase Gehring. Sina Booeshaghi carried the project. He was responsible for the crucial UMI collapsing analysis, and put together the paper. Fan Gao, director of the Caltech Bioinformatics Resource Center, set up and implemented the extensive benchmarking, and helped fine-tune the algorithms and converge to the final approach taken. Lambda Lu conducted what I believe to be the most in-depth and detailed analysis to date of the effect of pre-processing on results. Her framework should serve as a template for future development work in this area. Eduardo Beltrame designed the benchmark panels and had a key insight about how to present results that is described in more detail in the companion post on rotating the knee plot. He also helped in the complex task of designing and building the companion websites for the project. Kristján Eldjarn Hjörleifsson helped with the RNA velocity work and helped make custom indices that turned out to be fundamental in understanding the performance of pseudoalignment in the single-cell RNA-seq setting. Sina Booeshaghi spent a lot of time thinking about how to optimize the user experience, making the tutorials and videos, and working overall to make the results of the paper not just reproducible, but the the methods usable.

58989770-683bb400-8799-11e9-9cee-4bcff7662532

 

Blog Stats

  • 2,201,127 views
%d bloggers like this: