You are currently browsing the monthly archive for July 2019.
This post is the fifth in a series of five posts related to the paper “Melsted, Booeshaghi et al., Modular and efficient pre-processing of single-cell RNA-seq, bioRxiv, 2019“. The posts are:
- Near-optimal pre-processing of single-cell RNA-seq
- Single-cell RNA-seq for dummies
- How to solve an NP-complete problem in linear time
- Rotating the knee (plot) and related yoga
- High velocity RNA velocity
The following passage about Beethoven’s fifth symphony was written by one of my favorite musicologists:
“No great music has ever been built from an initial figure of four notes. As I have said elsewhere, you might as well say that every piece of music is built from an initial figure of one note. You may profitably say that the highest living creatures have begun from a single nucleated cell. But no ultra-microscope has yet unraveled the complexities of the single living cell; nor, if the spectroscope is to be believed, are we yet very full informed of the complexities of a single atom of iron : and it is quite absurd to suppose that the evolution of a piece of music can proceed from a ‘simple figure of four notes’ on lines in the least resembling those of nature.” – Donald Francis Tovey writing about Beethoven’s Fifth Symphony in Essays in Musical Analysis Volume I, 1935.
This passage conveys something true about Beethoven’s fifth symphony: an understanding of it cannot arise from a limited fixation on the famous four note motif. As far as single-cell biology goes, I don’t know whether Tovey was familiar with Theodor Boveri‘s sea urchin experiments, but he certainly hit upon a scientific truth as well: single cells cannot be understood in isolation. Key to understanding them is context (Eberwine et al., 2013).
RNA velocity, with roots in the work of Zeisel et al., 2011, has been recently adapted for single-cell RNA-seq by La Manno et al. 2018, and provides much needed context for interpreting the transcriptomes of single-cells in the form of a dynamics overlay. Since writing a review about the idea last year (Svensson and Pachter, 2019), I’ve become increasingly convinced that the method, despite relying on sparse data, numerous very strong model assumptions, and lots of averaging, is providing meaningful biological insight. For example, in a recent study of spermatogonial stem cells (Guo et al. 2018), the authors describe two “unexpected” transitions between distinct states of cells that are revealed by RNA velocity analysis (panel a from their Figure 6, see below):
Producing an RNA velocity analysis currently requires running the programs Cell Ranger followed by velocyto. These programs are both very slow. Cell Ranger’s running time scales at about 3 hours per hundred million reads (see Supplementary Table 1 Melsted, Booeshaghi et al., 2019). The subsequent velocyto run is also slow. The authors describe it as taking “approximately 3 hours” but anecdotally the running time can be much longer on large datasets. The programs also require lots of memory.
To facilitate rapid and large-scale RNA velocity analysis, in Melsted, Booeshaghi et al., 2019 we describe a kallisto|bustools workflow that makes possible efficient RNA velocity computations at least an order of magnitude faster than with Cell Ranger and velocyto. The work, a tour-de-force of development, testing and validation, was primarily that of Sina Booeshaghi. Páll Melsted implemented the bustools capture command and Kristján Hjörleifsson assisted with identifying and optimizing the indices for pseudoalignment. We present analysis on two datasets in the paper. The first is single-cell RNA-seq from retinal development recently published in Clark et al. 2019. This is a beautiful paper- and I don’t mean just in terms of the results. Their data and results are extremely well organized making their paper reproducible. This is so important it merits a shout out 👏🏾
See Clark et al. 2019‘s GEO GSE 118614 for a well-organized and useful data share.
The figure below shows RNA velocity vectors overlaid on UMAP coordinates for Clark et al.’s 10 stage time series of retinal development (see cell [8] in our python notebook):
An overlap on the same UMAP with cells colored by type is shown below:
Clark et al. performed a detailed pseudotime analysis in their paper, which successfully identified genes associated with cell changes during development. This is a reproduction of their figure 2:
We examined the six genes from their panel C from a velocity point of view using the scvelo package and the results are beautiful:
What can be seen with RNA velocity is not only the changes in expression that are extracted from pseudotime analysis (Clark et al. 2019 Figure 2 panel C), but also changes in their velocity, i.e. their acceleration (middle column above). RNA velocity adds an interesting dimension to the analysis.
To validate that our kallisto|bustools RNA velocity workflow provides results consistent with velocyto, we performed a direct comparison with the developing human forebrain dataset published by La Manno et al. in the original RNA velocity paper (La Manno et al. 2018 Figure 4).
The results are concordant, not only in terms of the displayed vectors, but also, crucially, in the estimation of the underlying phase diagrams (the figure below shows a comparison for the same dataset; kallisto on the left, Cell Ranger + velocyto on the right):
Digging deeper into the data, one difference we found between the workflows (other than speed) is the number of reads counts. We implemented a simple strategy to estimate the required spliced and unspliced matrices that attempts to follow the one described in the La Manno et al. paper, where the authors describe the rules for characterizing reads as spliced vs. unspliced as follows:
1. A molecule was annotated as spliced if all of the reads in the set supporting a given molecule map only to the exonic regions of the compatible transcripts.
2. A molecule was annotated as unspliced if all of the compatible transcript models had at least one read among the supporting set of reads for this molecule mapping that i) spanned exon-intron boundary, or ii) mapped to the intron of that transcript.
In the kallisto|bustools workflow this logic was implemented via the bustools capture command which was first use to identify all reads that were compatible only with exons (i.e. there was no pseudoalignment to any intron) and then all reads that were compatible only with introns (i.e. there was no pseudoalignment completely within an exon). While our “spliced matrices” had similar numbers of counts, our “unspliced matrices” had considerably more (see Melsted, Booeshaghi et al. 2019 Supplementary Figure 10A and B):
To understand the discrepancy better we investigated the La Manno et al. code, and we believe that differences arise from the velocyto package logic.py code in which the same count function
def count(self, molitem: vcy.Molitem, cell_bcidx: int, dict_layers_columns: Dict[str, np.ndarray], geneid2ix: Dict[str, int])
appears 8 times and each version appears to implement a slightly different “logic” than described in the methods section.
A tutorial showing how to efficiently perform RNA velocity is available on the kallisto|bustools website. There is no excuse not to examine cells in context.
Recent Comments